211 research outputs found

    Anisotropy of the upper critical field in MgB2: the two-gap Ginzburg-Landau theory

    Full text link
    The upper critical field in MgB2 is investigated in the framework of the two-gap Ginzburg-Landau theory. A variational solution of linearized Ginzburg-Landau equations agrees well with the Landau level expansion and demonstrates that spatial distributions of the gap functions are different in the two bands and change with temperature. The temperature variation of the ratio of two gaps is responsible for the upward temperature dependence of in-plane Hc2 as well as for the deviation of its out-of-plane behavior from the standard angular dependence. The hexagonal in-plane modulations of Hc2 can change sign with decreasing temperature.Comment: 6 pages, 6 figures, accepted in the European Physical Journal

    Data model issues in the Cherenkov Telescope Array project

    Get PDF
    The planned Cherenkov Telescope Array (CTA), a future ground-based Very-High-Energy (VHE) gamma-ray observatory, will be the largest project of its kind. It aims to provide an order of magnitude increase in sensitivity compared to currently operating VHE experiments and open access to guest observers. These features, together with the thirty years lifetime planned for the installation, impose severe constraints on the data model currently being developed for the project. In this contribution we analyze the challenges faced by the CTA data model development and present the requirements imposed to face them. While the full data model is still not completed we show the organization of the work, status of the design, and an overview of the prototyping efforts carried out so far. We also show examples of specific aspects of the data model currently under development.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogeneous set of devices. Moreover, the system is required to be ready to adapt the observation schedule, on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma ray bursts. This contribution provides a summary of the main design choices and plans for building the ACTL system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Anisotropy of the upper critical field in superconductors with anisotropic gaps. Anisotropy parameters of MgB2

    Full text link
    The upper critical field Hc2 is evaluated for weakly-coupled two-band superconductors. By modeling the actual bands and the gap distribution of MgB2 by two Fermi surface spheroids with average parameters of the real material, we show that H_{c2,ab}/H_{c2,c} increases with decreasing temperature in agreement with available data.Comment: 4 pages, 2 figure

    Data compression for the First G-APD Cherenkov Telescope

    Full text link
    The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT) has been operating on the Canary island of La Palma since October 2011. Operations were automated so that the system can be operated remotely. Manual interaction is required only when the observation schedule is modified due to weather conditions or in case of unexpected events such as a mechanical failure. Automatic operations enabled high data taking efficiency, which resulted in up to two terabytes of FITS files being recorded nightly and transferred from La Palma to the FACT archive at ISDC in Switzerland. Since long term storage of hundreds of terabytes of observations data is costly, data compression is mandatory. This paper discusses the design choices that were made to increase the compression ratio and speed of writing of the data with respect to existing compression algorithms. Following a more detailed motivation, the FACT compression algorithm along with the associated I/O layer is discussed. Eventually, the performances of the algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on astronomical file format

    Influence of gap structures to specific heat in oriented magnetic fields: Application to the orbital dependent superconductor, Sr2_2RuO4_4

    Full text link
    We discuss influence of modulation of gap function and anisotropy of Fermi velocity to field angle dependences of upper critical field, Hc2H_{c2}, and specific heat, CC, on the basis of the approximate analytic solution in the quasiclassical formalism. Using 4-fold modulation of the gap function and the Fermi velocity in the single-band model, we demonstrate field and temperature dependence of oscillatory amplitude of Hc2H_{c2} and CC. We apply the method to the effective two-band model to discuss the gap structure of Sr2_2RuO4_4, focusing on recent field angle-resolved experiments. It is shown that the gap structures with the intermediate magnitude of minima in [100][100] direction for γ\gamma band, and tiny minima of gaps in [110][110] directions for α\alpha and β\beta bands give consistent behaviors with experiments. The interplay of the above two gaps also explains the anomalous temperature dependence of in-plane Hc2H_{c2} anisotropy, where the opposite contribution from the passive αβ\alpha\beta band is pronounced near TcT_c.Comment: 7 pages, 11 figures in JPSJ forma

    Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    Full text link
    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy (>> few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SST-1M telescope is described, as well as the interface between the telescope abstraction to the CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments devoted to the study of very high energy gamma-rays coming from space. The detection technique consists of observing images created by the Cherenkov light emitted when gamma rays, or more generally cosmic rays, propagate through the atmosphere. While in the case of protons or gamma-rays the images present a filled and more or less elongated shape, energetic muons penetrating the atmosphere are visualised as characteristic circular rings or arcs. A relatively simple analysis of the ring images allows the reconstruction of all the relevant parameters of the detected muons, such as the energy, the impact parameter, and the incoming direction, with the final aim to use them to calibrate the total optical throughput of the given IACT telescope. We present the results of preliminary studies on the use of images created by muons as optical throughput calibrators of the single mirror small size telescope prototype SST-1M proposed for the Cherenkov Telescope Array.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array

    Full text link
    The foreseen implementations of the Small Size Telescopes (SST) in CTA will provide unique insights into the highest energy gamma rays offering fundamental means to discover and under- stand the sources populating the Galaxy and our local neighborhood. Aiming at such a goal, the SST-1M is one of the three different implementations that are being prototyped and tested for CTA. SST-1M is a Davies-Cotton single mirror telescope equipped with a unique camera technology based on SiPMs with demonstrated advantages over classical photomultipliers in terms of duty-cycle. In this contribution, we describe the telescope components, the camera, and the trigger and readout system. The results of the commissioning of the camera using a dedicated test setup are then presented. The performances of the camera first prototype in terms of expected trigger rates and trigger efficiencies for different night-sky background conditions are presented, and the camera response is compared to end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348
    corecore